GBR file specifications

Date:	1 june 1999

By:	Harry Mulder (hpmulder@casema.net)

This document specifies the structure and content of a GBR file.

In this document, the following datatype definitions are used:

Word�
16-bit hi-endian.�
�
Long�
32-bit hi-endian.�
�
String (xx)�
C-style string; ie. ends with hex 00, with a maximum length of xx (including end-marker).�
�

Header

Each GBR file should begin with the following header:

Name�
Size�
Content�
�
Magic marker�
3 bytes�
“GBO”�
�
Filetype version�
1 byte�
“0”�
�

Use the Magic marker to make sure this is indeed a GBR file; it should always contain GBO (in uppercase). The Filetype version tells which structure is used in this GBR file. For the structure specified in this document, this number should be 0 (in ASCII, not binary). This number will only change if the complete structure changes, not when an object-type is added or changed.

Objects

Directly after the header, zero or more objects will follow, containing the actual information. Each object has the following prefix:

Name�
Size�
Content�
�
ObjectType�
Word�
The type of the following object�
�
ObjectID	�
Word�
Unique identifier for this object�
�
RecordLength	�
Long�
Size of this object (in bytes, excluding this header)�
�

This header permits you to ‘walk’ through all objects in the GBR file, using the ones you want and ignoring the ones you don’t need (or know), in the following fashion:

Read the first 8 bytes. If the ObjectType is the one you want, handle it. Else, skip the next ObjectLength bytes.

Repeat until EOF().

The EOF means a real filesystem-response; there is no EOF-marker in the file itself.

When writing objects, you should keep the following in mind:

When “saving” an existing file, it is best to update it instead of rewriting the whole file; if you do rewrite it, make sure you copy any objects (and extra data in known objects) you don’t know to this new file to retain information stored by other applications (or newer versions of your own).

Don’t assume any length for an object; always use the size specified in the file; so, when writing an object to a GBR file which contains the same object, but with a longer size, don’t decrease it; just change the bytes you want to change, and ignore the rest. When you encounter a shorter object, you can either reshape the whole file to account for the extra bytes (not recommended), or either mark the current object as deleted and add a new one at the end of the file.

As long as you ignore (ie don’t change or delete) unknown or unwanted objects and data, use the RecordLength to determine the size of an object, don’t assume any order in which the objects should appear in the GBR-file and don’t assume all the objects you need are available in the file, then this flexible system gives you up- and downward compatibility with all GBR files of Filetype 0 (with is currently the only one available).

�

Objecttypes

The following objecttypes are currently in use:

Producer	(Hex 0001)

Name�
Size�
Content�
�
Name �
String (30)�
Name of application.�
�
Version �
String (10)�
Version of application.�
�
Info�
String (80)�
Extra information about the application.�
�

This object contains some information about the application that made the GBR file.

TileData	(Hex 0002)

Name�
Size�
Content�
�
Name �
String (30)�
Name of tileset.�
�
Width �
Word�
Width of each individual tile.�
�
Height �
Word�
Height of each individual tile.�
�
Count �
Word�
Total number of tiles in this tileset.�
�
ColorSet�
4 bytes�
Colorset which applies to this tileset.�
�
Data�
x bytes�
Actual tileset data.�
�

This object contains a tileset.

The layout of the Data-array is depending on the Width and Height; if the tilesize is 8x8, the first 8*8 bytes hold the first tile, the next 8*8 the next, etc. if the size is 32x32, the first 32*32 bytes contain the first tile, etc.

Each byte in Data is $00-$03; remap these through the ColorSet to get the real color (the ColorSet is like the Object-Palette in the Gameboy itself).

The Name-field can be used as a label to the tileset (for user-friendliness; internal reference to objects should be done via ObjectID’s).

�

TileSettings	(Hex 0003)

Name�
Size�
Content�
�
TileID�
Word�
ObjectID of object to which this object refers (usually a Tiledata object).�
�
Simple�
Boolean�
Extra resulting tiles are shown.�
�
Flags�
Byte�
Display settings:

Hex 01		Grid is shown.

Hex 02		Nibble markers are shown.�
�
LeftColor�
Byte�
Currently selected color for left mouse-button.�
�
RightColor�
Byte�
Currently selected color for right mouse-button.�
�
GBTD 0.9�
�
SplitWidth�
Word�
Number for horizontal tiles for Split-Paste&Copy.�
�
SplitHeight�
Word�
Number for vertical tiles for Split-Paste&Copy.�
�
SplitOrder�
Long�
Order used by Split-Paste&Copy:

Left to right, top to bottom

Top to bottom, left to right�
�
GBTD 1.0�
�
ColorSet�
Byte�
Selected color set:

Pocket

GameBoy

GBC

SGB�
�
GBTD 1.1�
�
Bookmarks�
Word(3)�
Tiles which are bookmarked.�
�
GBTD 2.0�
�
AutoUpdate�
Boolean�
AutoUpdate is/isn’t active.�
�

This object contains various screen-settings; although these settings are targeted for GBTD, other applications will most likely be able to use some of these settings for comparable functions.

TileExport	(Hex 0004)

Name�
Size�
Content�
�
TileID�
Word�
ObjectID of object to which this object refers (usually a Tiledata object).�
�
FileName�
String (128)�
Filename of export file.�
�
FileType�
Byte�
Type of export file:

Hex 00		RGBDS Assembly file

Hex 01		RGBDS Object file

Hex 02		TASM Assembly file

Hex 03		GBDK C file

Hex 04		Binary file�
�
SectionName�
String (20)�
Name of section to use.�
�
LabelName�
String (20)�
Label to use for data.�
�
Bank�
Byte�
Bank in which data should be stored.�
�
TileArray�
Boolean�
Should the tiles be stored as one, or each separate.�
�
Format�
Byte�
Format of exported data:

Hex 00		Gameboy 4 color

Hex 01		Gameboy 2 color

Hex 03		Byte per color�
�
Counter�
Byte�
Type of counter to include:

Hex 00		None

Hex 01		Byte-count as Byte

Hex 02		Byte-count as Word

Hex 03		Byte-count as Constant

Hex 04		Tile-count as Byte

Hex 05		Tile-count as Word

Hex 06		Tile-count as Constant

Hex 07		8x8-count as Byte

Hex 08		8x8-count as Word

Hex 09		8x8-count as Constant�
�
From�
Word�
Start exporting from this tile.�
�
Upto�
Word�
Export upto this tile.�
�
Compression�
Byte�
The following compression-type should be used:

Hex 00		None

Hex 01		GB-Compress�
�
GBTD 1.3�
�
IncludeColors�
Boolean�
Include palette colors Yes/No�
�
GBTD 1.4�
�
SGBPalettes�
Byte�
Include SGB palettes in following fashion:

None

Constant per entry

2 Bits per entry

4 Bits per entry

1 Byte per Entry�
�
GBCPalettes�
Byte�
Include GBC palettes in following fashion:

None

Constant per entry

2 Bits per entry

4 Bits per entry

1 Byte per Entry�
�
GBTD 1.5�
�
MakeMetaTiles�
Boolean�
Convert to Metatiles Yes/No�
�
MetaOffset�
Long�
Index offset�
�
MetaCounter�
Byte�
Index counter type:

None

Byte-count as Byte

Byte-count as Word

Byte-count as Constant

Tile-count as Byte

Tile-count as Word

Tile-count as Constant

8x8-count as Byte

8x8-count as Word

8x8-count as Constant�
�
GBTD 1.8�
�
Split�
Boolean�
Split data Yes/No�
�
BlockSize�
Long�
Block size�
�
SelTab�
Byte�
Currently selected tabpage (GUI).�
�

This object stores the export-settings for a Tiledata object.

TileImport	(Hex 0005)

Name�
Size�
Content�
�
TileID�
Word�
ObjectID of object to which this object refers (usually a Tiledata object).�
�
FileName�
String (128)�
Filename of import file.�
�
FileType�
Byte�
Type of import file:

GBE file

Binary 8x8 tiles�
�
FromTile�
Word�
First tile from import file.�
�
ToTile�
Word�
First tile in current application.�
�
TileCount�
Word�
Total amount of tiles to import.�
�
ColorConversion�
Byte�
Import colors:

	0	by colors

	1	by index�
�
GBTD 1.5�
�
FirstByte�
Long�
First byte to use�
�
�
Byte�
Binary file type:

Byte per pixel

bits per pixel

Gameboy VRAM�
�

This object stores import-settings.

Palettes	(Hex 000D)

Name�
Size�
Content�
�
ID�
Word�
ObjectID of object to which this object refers (usually a Tiledata object).�
�
Count�
Word�
Number of GBC Colors.�
�
Colors�
TGBColorSets�
Actual colors for GBC.�
�
SGBCount�
Word�
Number of SGB Colors.�
�
SGBColors�
TGBColorSets�
Actual colors for SGB.�
�

This object stores the actual palette colors for both the GBC and SGB.

The TGBColorSets works as follows:

For Count (or SGBCount)	�
�
�
Color 0

Color 1

Color 2

Color 3�
�

Where ‘Color x’ is a 4-byte RGB value, as used by Windows.

�

TilePal	(Hex 000E)

Name�
Size�
Content�
�
ID�
Word�
ObjectID of object to which this object refers (usually a Tiledata object).�
�
Count�
Word�
Number of tile entries in ColorSet (usually tile count).�
�
ColorSet�
Long(x)�
Palette map for GBC.�
�
SGBCount�
Word�
Number of tile entries in SGBColorSet (usually tile count).�
�
SGBColorSet�
Long(x)�
Palette map for SGB.�
�

This object stores the Palette maps for both the GBC and SGB.

The length of ColorSet is determined by Count; the length of SGBColorSet is determined by SGBCount. Both ColorSet and SGBColorSet have the following structure:

	ColorSet[n] = Pal number for tile n.

Deleted	(Hex 00FF)

If you see an object of this type, it is deleted and should be ignored.

�

Additions

You are free to add new objects, data-fields and extra options in indexed data-fields as long as these additions do not conflict with current specifications. Also, please report them to me as soon as possible; they will then be added to these specifications. This way, others can start using them too, and clashes are kept to a minimum.

Contacting me

If you have any further questions about these specifications, feel free to contact me at hpmulder@casema.net. Also, the latest version of these specifications can be found at my web-site, which is located at http://www.casema.net/~hpmulder.

History

Date�
Changed�
�
22 november 1997�
First release.�
�
1 june 1999�
Updated for various objects.�
�

