GBTD/GBMB

“Auto Update” Technical specifications

Version: 1.0 (24 August 1999)

Copyright Harry Mulder, 1999

This document describes the technique used by the “Auto Update”-feature of GBTD and GBMB. By employing this technique, any Windows-application can make use to this feature, which gives a direct and real-time view into a tileset which a user is currently editing/viewing.

In basic terms, Auto Update broadcasts a specific system-wide message whenever a change has taken place to a tileset. Applications can then use a shared memory block to get hold of the actual changes.

The message

As stated, a system-wide message is send whenever there has been a change to a tileset; note that each tileset has his own message, so that applications won’t respond to changes in tilesets they are using. The name of the message is as followed:

GBHMTILE{full path to tileset file}

So, the message for a file named C:\project\tiles.gbr will be “GBHMTILEC:\project\tiles.gbr”.

In it’s most simple form, you can refresh all information regarding the tileset when this message appears. However, this is usually overkill, so it is more efficient to only change the parts of the tileset which have actually changed. The WParam of this message gives you extra information about what has changed. This parameter can have two meanings:

If bit 15 is set to 0, then bit 0-14 refer to the tile number which has been changed. Changes can be different pixels, or changes in the selected palette entries for this type.

If bit 15 is set to 1, something more special (usually a bigger change) has taken place; bit 0-14 then refer to any of these values:

Value�
Name�
Description�
�
0�
TILEMSGTOTAL�
A full and total refresh of all parts of the tileset should take place. This can be seen as a combination of all other messages.�
�
1�
TILEMSGLIST�
All tiles should be refreshed, but only the actual pixels and palette entries. Note that this is also called when the actual tile count has changed.�
�
2�
TILEMSGDIM�
The dimensions of the tiles (“Tile size..”) have changed.�
�
3�
TILEMSGPAL�
The Gameboy palette has changed (ie: the values used by IO-ports $47-$49, not the color palettes).�
�
4�
TILEMSGCOLSETS�
Either the GBC or SGB palette colors have changed.�
�
[Other]�
�
Interpret all other values as a TILEMSGTOTAL to retain forward compatibility.�
�

LParam contains the handle of the sender-application; use this to determine if the message was send by your own application (a system-wide message is also send to the sending application, and in most cases you don’t want to respond to changes you reported).

�

The memory block

To exchange the actual information about the tileset, a shared memory block is used, or to be more specific, a memory mapped file, which is in essense a shared memory block. This mem-mapped file has the same name as the actual file, including the full path.

The structure of this memory block is as follows:

Name�
Type�
Description�
�
ID�
Byte(4)�
Magic Marker; this should be “TU01”.�
�
Tiles�
Byte(8*8*768)�
The pixel-values of the tileset.�
�
PalMaps�
Byte(768 *2)�
Each tile has a 2 byte entry in this array:

Byte 0	: GBC palette entry

Byte 1	: SGB palette entry�
�
TileCount�
Integer�
Number of tiles in tileset.�
�
TileWidth�
Integer�
Width of tiles.�
�
TileHeight�
Integer�
Height of tiles.�
�
Palettes�
Byte(4)�
Contains the Gameboy palette layout (not the color palettes, the original palette)�
�
GBCColSet�
TGBColorSets�
Palette colors for GBC.�
�
SGBColSet�
TGBColorSets�
Palette colors for SGB.�
�

Note that integers are in this case 4 byte values.

TGBColorSets is a two-dimentional array which contains four color-values for each 8 palette-entries. The color-value is the standard windows-color (4-byte RGB values, the hightest byte is not used). The total size is 8 * 4 * 4 = 128 bytes. Note that although the SGB only uses the first four entries of the array, all 8 slots are reserved.

The Tiles data plane is filled depending on the current tile size. If the current size is 8*8, it contains blocks of 8*8 bytes for each tile. If it is 32*32, it will contain 32*32 sized blocks for each tile.

This memory block should be up-to-date at any point in time, not just after sending a message.

�
Implementation

To help you on your way, here are some technical details on how to implement the connection.

Initiation

When you initiate Auto Update, the following steps should be made:

Register the message

Use a call to RegisterWindowMessage to either create or retreive the message value. Set up your message handler for this message.

Create or retreive the memory mapped file

	You need a view on the shared memory block (the mem-mapped file); however, it is quite possible that you are the first application running, so you might have to create it. Next, since this memory block should always be up-to-date, you should fill it if you are the first application. In code, this process should be something like this:

	FHandle := CreateFileMapping($FFFFFFFF, nil, PAGE_READWRITE, 0,

 SizeOf(MemBlock), FileName);

if (FHandle <> null) then

 if (GetLastError = ERROR_ALREADY_EXISTS) then

 begin

 (* the memory block is already in place; get a view *)

 FMemBlock := MapViewOfFile(FHandle, FILE_MAP_READ, 0, 0,

 SizeOf(MemBlock));

 (* at this point, retreive all info from the buffer so you are

fully up-to-date with any application already running *)

 end

 else

 begin

 (* the memory block wasn’t there; get a view *)

 FMemBlock := MapViewOfFile(FHandle, FILE_MAP_WRITE, 0, 0,

 SizeOf(MemBlock));

 (* fill the buffer with your info; it might also be a good idea

 to send a TILEMSGTOTAL to be save *)

 end;

	After this routine, FMemBlock contains a pointer to the shared memory block. Note that this example uses FILE_MAP_READ when a block already exists; if your application is going to make changes itself, this should be FILE_MAP_WRITE.

	Be sure to check the Magic Marker after this routine, as future update might employ a different structure for the memory block.

Sending changes

First, update the memory block. Then broadcast a system-wide message, like so:

SendMessage(HWND_BROADCAST, FMsg, WParam, LParam);

	Where FMsg is the message value, WParam specifies the changes, and LParam contains the handle of your application.

	Be sure to first update the memory block, then send the message. In that order, possible sync-problems are kept to a minimum.

�

Responding to changes

Possibly the simplest step. Ignore the message if LParam contains your application-handle, else retreive data from the memory block according to the changes reported by WParam.

Finalisation

There is nothing to finalize about the message; however, you should release the view on the memory block, and try to release the memory block itself (in case of you being the last active application):

if Assigned(FMemBlock) then UnmapViewOfFile(FMemBlock);

if (FHandle <> null) then CloseHandle(FHandle);

